Parameter estimation using chaotic time series
نویسندگان
چکیده
منابع مشابه
Parameter estimation using chaotic time series
A B S T R A C T We show how the response of a chaotic model to temporally varying external forcing can be efficiently tuned via parameter estimation using time series data, extending previous work in which an unforced climatologically steady state was used as the tuning target. Although directly fitting a long trajectory of a chaotic deterministic model to a time series of data is generally not...
متن کاملParameter Estimation of Loranz Chaotic Dynamic System Using Bees Algorithm
An important problem in nonlinear science is the unknown parameters estimation in Loranz chaotic system. Clearly, the parameter estimation for chaotic systems is a multidimensional continuous optimization problem, where the optimization goal is to minimize mean squared errors (MSEs) between real and estimated responses for a number of given samples. The Bees algorithm (BA) is a new member of me...
متن کاملDetecting Huntington Patient Using Chaotic Features of Gait Time Series
Huntington's disease (HD) is a congenital, progressive, neurodegenerative disorder characterized by cognitive, motor, and psychological disorders. Clinical diagnosis of HD relies on the manifestation of movement abnormalities. In this study, we introduce a mathematical method for HD detection using step spacing. We used 16 walking signals as control and 20 walking signals as HD. We took a s...
متن کاملParameter estimation using Volterra series
A polynomial approximation to the likelihood function allows for marginalised estimates of model parameters to be obtained in the form of a Volterra series. The series can be applied directly to the observed data vector in an iterative fashion, to converge upon a set of parameter MAP estimates with low computational cost. A sample application towards OCR is used as an illustration.
متن کاملParameter estimation and linear time-series analysis
This computer exercise gives an introduction to time-series analysis and estimation and model choice using Maximum Likelihood. It is preferred if you use Matlab, but you are allowed to use the programming language or package of your choice. If you choose not to use Matlab, please note that you are required to document your code extra carefully. 1 Preparations for the exercise Read chapter 4 in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tellus A: Dynamic Meteorology and Oceanography
سال: 2005
ISSN: 1600-0870
DOI: 10.3402/tellusa.v57i5.14735